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ABSTRACT 
 

Most existing stochastic models assume that the porous medium being studied can be 
characterized by one single correlation scale. However, hydraulic properties exhibit 
spatial variations at various scales, thus stochastic models developed for unimodal 
media may not be applicable to flow and transport in a bimodal heterogeneous 
medium. The aim of this study is to investigate under what circumstances the 
second-order moment-based stochastic models are applicable to the bimodal porous 
medium. We assume that two materials (categories) in the porous medium may have 
a different mean, variance, and correlation scale. The distribution of materials in the 
domain is characterized by indicator random functions. We derived expressions for 
the covariance of the indicator random variables and that of the composite field in 
terms of categorical proportions and transition probability. We solved the second-
order flow moment equations for the “equivalent” unimodal field with an 
exponential covariance of a single correlation scale computed for the composite 
field. On the other hand, we conduct two sets of Monte Carlo simulations: one with 
bimodal random fields and the other with equivalent unimodal fields. Numerical 
experiments show that a bimodal lnK field may be well approximated with an 
equivalent unimodal field when the bimodal distribution is highly asymmetric, under 
which condition the applicability of the second-order moment-based stochastic 
model is subject to the same limitation of relatively small variances as that for 
unimodal fields. When the bimodal distribution is symmetric, although it cannot be 
adequately represented by an equivalent unimodal distribution the second-order 
moment-based stochastic model seems to be applicable to larger composite variance 
systems than it does for an asymmetric distribution. 
 

 

1. Introduction 

It is well known that geological formations are ubiquitously heterogeneous. Stochastic 
approaches to flow and transport in heterogeneous porous media have been extensively 
studied in the last two decades and many stochastic models have been developed [e.g., 
Dagan, 1989; Gelhar, 1993; Zhang, 2001].  Most of these models assume that the porous 
medium being studied can be characterized by one single correlation scale on the basis of 
some field studies [Hoeksema and Kitanidis, 1984; Gelhar, 1993], which have showed 
that the hydraulic conductivity in some cases is unimodal. However, this in general may 
not be true. In fact, hydraulic properties exhibit spatial variations at various scales, such 
as at the laboratory scale due to variations in pore geometry, at the field scale due to soil 
stratifications, and at the regional scale due to large-scale geological variability. 



Stochastic models developed for unimodal heterogeneous porous media may not be 
directly applicable to flow and transport in bimodal heterogeneous porous media. One 
question we should ask is under what circumstances the stochastic models developed 
mainly for the unimodal heterogeneous media can be applied to flow in the bimodal 
heterogeneous systems.  

A few studies have been conducted on flow and transport in a bimodal porous 
medium [Desbarats, 1987, 1990; Rubin and Journel, 1991; Rubin, 1995; Russo et al., 
2001].  Desbarats [1987, 1990] modeled the permeability of a sandstone reservoir as a 
bimodal attribute of two possible values, Kss and Ksh. Variations within sandstone or shale 
were ignored. Rubin and Journel [1991] decomposed the random function of interest, 
say, Z(x), into a series of indicator random functions, allowing to assign specific spatial 
structure to each class of Z values. The effect of bimodal heterogeneity on transport has 
been studied by Rubin and Journel [1991] and Rubin [1995]. Both assumed that the 
spatial distribution of Z1(x) and Z2(x) are independent of the indicator random function, 
and thus the spatial structures of Z1, Z2, and the indicator random function could be 
assigned arbitrarily. Recently, Russo et al. [2001] investigated flow and transport of a 
tracer solute in variably saturated bimodal heterogeneous porous media and the 
corresponding "equivalent" unimodal media. Again, the indicator function (or variable) is 
modeled by assigning its own spatial structure, independent of the properties of the 
composite materials. It is known that the mean and variance of the indicator variable are 
related to the volumetric proportion of each individual material. For a porous medium 
with two materials, for example, �Ii(x)� = pi and 21

2 pp
iI =σ , where pi and Ii(x) are the 

volumetric proportion of material i and its indicator variable. Therefore, it may not be 
reasonable to assume that the correlation structures of the indicator variables can be 
assigned arbitrarily. The second question we would like to ask is how to quantitatively 
determine the spatial structure of the indicator random function based on the proportions 
and spatial structures of the two categories. 

The Markov chain method has been applied to geological formations with 
different materials [Harbaugh and Bonham-Carter, 1970; Lin and Harbaugh, 1984; 
Carle and Fogg, 1996; Carle and Fogg, 1997]. The distribution of materials is 
characterized by the transition probability between different materials. It has been shown 
[Carle, 1996; Carle and Fogg, 1996] that, in characterizing the structure of the indicator 
random functions, the transition probability between different categories is equivalent to 
the covariance of the indicator random functions and the former can be easily derived 
from field measurements.  

The aims of this study are (1) to derive explicit expressions for the covariance 
function of indicator random functions, based on the properties of different materials; and 
(2) to discuss the general requirements at which the second-order moment-based 
stochastic model with a covariance function of a single correlation length may be applied 
to a porous medium with bimodal heterogeneity. 
 

2. Mean and covariance of bimodal heterogeneous fields 

Let Y(x) be an attribute of interest, such as log hydraulic conductivity, and be expressed 
as 



)()()()()( 2211 xxxxx YIYIY +=      (1) 

where )(xiY , i = 1, 2, stands for different types (e.g., facies) of the same attribute Y(x) at 

location x, and Ii(x) are indicator spatial random functions defined over a domain Ω as 
Ii(x) = 1 if category i occurs at location x, and Ii(x) = 0 otherwise. For a continuous 
attribute Y(x), Ii(x) can be defined using a set of different cutoffs [Deutsch and Journel, 
1998; Rubin and Journel, 1991]. It is clear that I1(x)+ I2(x) = 1 for any x ∈ Ω. By 
definition, the joint probability of Ii(x) and Ij(x) can be expressed as 

)}()({}1)(,1)(Pr{),( χxχxχx jijiij IIEIIp ====     (2) 

and their marginal probability as 

)}({}1)(Pr{)( xxx iii IEIp ===       (3) 

The transition probability tij(x,χχχχ) is defined as the probability of category j occurring at 
location χχχχ, given the condition that category i occurs at location x: 

)}({/)}()({}1)(|1)(Pr{),( xχxxχχx ijiijij IEIIEIIt ====   (4) 

The covariance of the indicator functions can be given as 

)}({)}({)}()({),(, χxχxχx jijiijI IEIEIIEC −=     (5) 

Substituting (3) and (4) into (5), the covariance of indicator random variables can be 
expressed in terms of categorical proportions and the transition probability tij(x,χχχχ)  

)( )](),([),(, xχχxχx ijijijI pptC −=       (6) 

It should be noted that, since )(),()(),( χxχxχx jjiiij ptpt = , the covariance of the 

indicator random function is symmetric with respect to positions x and χχχχ, but the 
transition probability ),( χxijt is not symmetric.  It has been argued [e.g., Rubin and 

Journel, 1991; Rubin, 1995] that )(xiI and )(xjY  should be mutually uncorrelated. Under 

this condition and with the additional assumption of stationarity, the mean and covariance 
of Y can be derived as 

2211 YpYpY +=         (7) 
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where  

ijijijI pphthC  ])([)(, −=        (10) 

and h is the separation distance. 
 



3. Covariance of indicator random functions 

In the last section, we expressed the covariance of the composite log hydraulic 
conductivity field in terms of the covariance functions of the indicator random functions. 
It is commonly assumed in the literature that the correlation structures of the indicator 
random variables be independent of the individual categories [Rubin and Journel, 1991; 
Rubin, 1995; Russo et al., 2001]. In this section, we derive expressions for the covariance 
of the indicator random functions using the Markovian chain approach, based on the 
statistics of different categories in a porous medium.  

It is assumed in a three-dimensional Markovian chain model that spatial 
variability in any direction can be characterized by a one-dimensional Markovian chain 
model [Lin and Harbaugh, 1984]. For a one-dimensional Markovian chain model, the 
continuous-lag transition probability matrix T for any lag h can be written as [Carle 1996; 
Carle and Fogg, 1996, 1997]: 

RhehT =)(          (11) 

where R is a 2 × 2 transition rate matrix whose entry rij represents the rate of change from 
category i to category j per unit length of category i in the given direction. If the 
transition rate matrix R is known, the transition probability matrix T can be evaluated by 
the eigenvalue analysis. Let ηi, i =1,2, be eigenvalues of the transition rate matrix R, and 
Zi, i =1, 2, be their corresponding spectral component matrices, which are evaluated by 
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where E is the identical matrix,. Then (11) becomes 
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Now we focus on how to evaluate R and relate the covariance of the indicator random 
functions to the statistics of different materials in a porous medium. Taking derivative of 
(11) with respect to h and let h = 0, we have 

0
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hdh

hdT
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Note that the transition probability tij has to satisfy ti1 + ti2  = 1, i = 1, 2, and p1 t1j + p2 t2j = 
pj, j = 1,2. It follows immediately that transition rate rij satisfies 

1,2i                                        021 ==+ ii rr      (15) 

2 1,j                         02211 ==+ jj rprp      (16) 

 Equations (15) and (16) imply that det(R) = 0, therefore, one of two eigenvalues of R, 
say η1, must be zero. Carle [1996] showed that the diagonal terms of the transition rate 
matrix R is related to mean lengths: 
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From (15), if the mean lengths in a given direction are L1 and L2, respectively, the 
transition rate matrix must be in the following form 
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Two eigenvalues are η1 = 0 and η2  = -1/p2L1 = -1/p1L2, and their corresponding spectral 
matrices are 
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From (13), the transition probability tij can be written as 

Ih
jijjij eppht λδ / )()( −−+=        (20) 

where the parameter λI is defined as  

)/( 21211221 LLLLLpLpI +===λ       (21) 

Substituting (20) into (10), one obtains the covariance of the indicator functions 

Ih
jijiijI epphC λδ /

,  )()( −−=        (23) 

It is seen that λI in fact is the correlation length of the indicator functions and is not 
independent of the spatial structures of the two categories. It should be emphasized that if 
the mean lengths depend on directions, the correlation length λI is also direction-
dependent. Since for a stationary field, the categorical proportions of the field are the 
same in any direction. Therefore, it is seen from (21) that the isotropic ratio between any 
two directions equals to the ratio of the mean lengths of a category in these two 
directions. Once the covariances of the indicator random functions CI,ij(h) are known, 
CY(h) can be calculated using (8) and the integral scale of the Y field can be derived by 
integrating CY(h): 
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4. Numerical Implementation 

To investigate the applicability of the unimodal stochastic models with a single 



correlation length to flow in a bimodal system, in this section we illustrate a few 
examples for flow in a two-dimensional horizontal, saturated porous medium with two 
materials. The square domain of 12m × 12m is uniformly discretized into 60 × 60 square 
elements with a size of 0.2m × 0.2m. Two factors have been considered in specifying 
material properties for the cases studied: the symmetry of the Y(x) distribution and the 
contrast of between �Y1(x)� and �Y2(x)�. Detail specifications for materials in each case 
are listed in Table 1. The correlation length of the indicator function, Iλ , is specified 
according to (21).  It is assumed that the covariance of Yi(x) is exponential with a range 

iii Ll ≤= λ3 . The values of �Y1� and �Y2� are chosen such that �Y� of the composite field is 

zero. The parameters in the right part of the table (the last three columns), i.e., �Y�, 2
Yσ , 

and λ, are the means (weighted), variances and correlation lengths of the composite field 
that are calculated using (7), (9), and (25).  

In all cases, the hydraulic head is prescribed at the left and right boundaries as 
10.5 m and 10.0 m, respectively, which produces a mean flow from the left to the right. 
The lateral boundaries are prescribed as no-flow boundaries.  

The purpose of designing these cases is briefly described as follows. Cases 1-2 (p1 
= 0.3) are designed against Cases 3-4 (p1 = 0.5) to test the effects of categorical 
proportions and symmetry of the Y distribution. The pair of Case 1 and Case 2 (or, Case 3 
and Case 4) is compared to explore the effect of the contrast of the mean Y between two 
materials. 

Table 1. Parameter specifications for all cases  

Parameter 1p  1Y  2Y  2

1Yσ  2

2Yσ  iλ  Y  2
Yσ  λ  

Case 1 0.3 -1.4 0.6 0.1 0.1 1.2 0.0 0.94 2.362
Case 2 0.3 -2.8 1.2 0.1 0.1 1.2 0.0 3.46 2.477
Case 3 0.5 -1.0 1.0 0.1 0.1 1.2 0.0 1.10 1.724
Case 4 0.5 -2.0 2.0 0.1 0.1 1.2 0.0 4.10 1.780

 
For each case, we conduct two sets of Monte Carlo simulations and compare results 
against those from the second-order moment-based stochastic models [Zhang and Winter, 
1999; Zhang and Lu, 2001]. The first set of Monte Carlo simulations is performed for 
flow in a porous medium with two materials. For this purpose, we first generate 5,000 
two-dimensional 61 × 61 (Y(x) is defined at nodal points) Markovian chain random fields 
of two categories with given proportions p1 and p2, using Transition Probability 
Geostatistical Software (T-PROGS) developed by Carel [Carel, 1996]. We then generate 
two sets of 5,000 two-dimensional 61 × 61 unconditional Gaussian realizations with zero 
mean, unit variance, and an exponential covariance function with a correlation length 

21 λλ =  =1.20 m as specified in Table 1, using a sequential Gaussian random field 
generator sgsim from GSLIB [Deutsch and Journel, 1998]. The quality of these Gaussian 
random fields is first checked by comparing the sample mean and variance of these 
unconditional realizations with the specified zero mean and unit variance. The variogram 
calculated from generated Gaussian realizations is also compared with the analytical 
exponential model. These comparisons indicate that the generated Gaussian realizations 
satisfy the specified mean, variance, and correlation length very well. Each Markovian 



chain field is then combined with two continuous Gaussian realizations that are scaled 
from zero mean and unit variance to the specified means and variances of the two 
categories to form a new random field Y.  As an example, one bimodal Markovian chain 
(indicator, geometry) realization with proportion p1 = 0.3 and the combined bimodal 
realization for Case 2 are shown in Figure 1, with a weighted �Y� = 0.0 and a total 
variance 2

Yσ  = 3.46. The histograms of the generated log hydraulic conductivity 
realizations for all cases are depicted in Figure 2, where each histogram is obtained from 
18,605,000 (= 61 × 61 × 5,000) data points. For each realization, the saturated steady-
state flow equation is solved using Finite-Element Heat- and Mass-Transfer code 
(FEHM) developed by Zyvoloski et al. [1997]. The convergence of Monte Carlo 
simulations is checked by selecting some points in the domain and plotting the sample 
statistics of head and fluxes at these points against the number of Monte Carlo 
simulations (not shown). It is found that 5,000 realizations are adequate for all these 
cases. The second set of Monte Carlo simulations is done for the equivalent unimodal 
fields with an exponential covariance. For each case, the mean, variance, and correlation 
scale are computed from the composite fields with (7), (9), and (25), respectively. The 
first set of Monte Carlo simulations is termed “bimodal Monte Carlo”, and the second 
called “unimodal Monte Carlo”. The bimodal Monte Carlo simulation results are 
considered the “true” solution that is the basis for comparisons between different 
approaches. 
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Figure 1. Examples of a Markovian (indicator, geometry) realization (a) and a 
composite log hydraulic conductivity field (b) using the Markovian realization 
and two Gaussian realizations. 

 
The second-order moment-based stochastic model [Zhang and Winter, 1999; Zhang and 
Lu, 2001] is applied to a statistically homogeneous field with a mean calculated from (7) 
and an exponential covariance function with the variance and the single correlation length 
computed from (9) and (25). For the purpose of comparison, we also apply the second- 
order moment-based stochastic model to the field with the mean �Y� and bimodal 
covariance CY computed from (7) and (24), respectively. We call the former the unimodal 
moment-based approach, and the latter the bimodal moment-based approach.  The main 



purpose of this study is to discuss the applicability of the unimodal moment-based and 
unimodal Monte Carlo approaches to flow in a bimodal porous medium. It is also of 
interest to see if the second-order bimodal moment-based stochastic model will make any 
improvement, comparing to the second-order unimodal moment-based stochastic model. 
 

5.  Results and Discussion 

For our cases with prescribed heads at the left and right boundaries, though there are only 
slight differences on the mean head computed using different approaches (not shown), 
the variances associated with the mean head predictions could, however, be significantly 
different. Figure 3 illustrates the head variance profiles along a line passing through the 
center of the flow domain and parallel to the x1 direction, from the four different 
approaches. The solid lines in the figure stand for the head variance computed from the 
bimodal Monte Carlo simulations (the “true” solution), dashed lines for results from the 
bimodal moment-based stochastic model, open circles for the unimodal Monte Carlo 
simulations, and open squares for the unimodal moment-based stochastic model. It is 
seen that for each case considered the head variance obtained from the bimodal moment-
based stochastic model is essentially the same as that computed from the unimodal 
moment-based stochastic model. This is understandable as the covariance (24) of the 
composite log hydraulic conductivity field can be well approximated by an exponential 
covariance of a single correlation length. 

From the figure it is seen that, when the total variance of the composite bimodal 
field is small (for example, 2

Yσ  = 0.94 and 1.10, for Case 1 and Case 3, respectively), the 
head variances computed from the four different approaches are very close (Figs. 3a and 
c), even though the distribution of log hydraulic conductivity is bimodal and/or 
asymmetric (Case 1). 

When the total variance of the composite bimodal field is increased by increasing 
the contrast between two materials, the head variance profiles show a very interesting 
pattern. The results from the two sets of Monte Carlo simulations are in a very close 
agreement for Case 2 whereas the two sets of Monte Carlo results differ significantly for 
Case 4. This indicates that the bimodal random field with p1 = 0.3 (i.e., 30-70 
proportions) in Case 2 is very well represented by an equivalent unimodal field with an 
exponential covariance while the bimodal field with p1 = 0.5 (50-50 proportions) in Case 
4 may not be adequately represented by an equivalent unimodal field. It is understandable 
after we realize that in Case 4 there are two distinct, equally important modals while in 
Case 2 one of the two modals dominates. Comparing the second-order moment-based 
approaches with the Monte Carlo simulations in Case 2 reveals that there exists a large 
difference, which may be attributed to the effects of higher-order terms truncated in the 
second-order moment-based approaches. However, for Case 4 the agreement between the 
moment-based approaches and the bimodal Monte Carlo simulations is excellent. This 
observation is surprising in that the composite variance of log hydraulic conductivity is 
larger in Case 4 than that in Case 2. At present, we do not have a firm explanation for it. 
We suspect that this unexpectedly good agreement is related to the fact that the bimodal 
log hydraulic conductivity distribution is symmetric and the variability in each category 
is small although the composite one is large, under which circumstance the higher-order 
terms may be small. We investigate this hypothesis via running more cases (not shown) 



of increased composite variances by increasing the contrasts in the means of the 
categories as well as the variabilities of them and find a consistent pattern that for the 
cases of symmetric bimodal distributions the agreement between the moment-based 
approaches and the bimodal Monte Carlo simulations deteriorates as the increase of the 
composite variance. To validate or invalidate this hypothesis, however, requires an 
evaluation of high-order terms truncated in the second-order moment-based model, 
perhaps, on the basis of Monte Carlo simulations. 

 

-5 -4 -3 -2 -1 0 1 2 3 4 50.00

0.05

0.10

0.15

0.20
Case 2

(b)

�Y� = 0.0
σY

2 = 3.46

Fr
eq
ue
nc
y

-5 -4 -3 -2 -1 0 1 2 3 4 50.00

0.05

0.10

0.15

0.20
Case 1

(a)

�Y� = 0.0
σY

2 = 0.94

Fr
eq
ue
nc
y

-5 -4 -3 -2 -1 0 1 2 3 4 50.00

0.05

0.10

0.15

0.20
Case 3

(c)

�Y� = 0.0
σY

2 = 1.1

-5 -4 -3 -2 -1 0 1 2 3 4 50.00

0.05

0.10

0.15

0.20
Case 4

(d)

�Y� = 0.0
σY

2 = 4.1

 

Figure 2. Histograms of the composite log hydraulic conductivity fields for 
numerical simulation cases. 
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Figure 3. Comparison of the head variance obtained from four different 
approaches for all cases with prescribed head boundaries. 



6. Conclusions 

In this study, we considered a porous medium composed of two materials, each of which 
may have different means, variances and correlation scales of log hydraulic conductivity 
Y = lnK.  We first derived an expression for the correlation length of indicator random 
functions in terms of the statistics of the two materials in the porous medium, which has 
been assumed to be independent of the statistics of the two materials in the previous 
studies [Rubin and Journel, 1991; Rubin, 1995; Russo et al., 2001]. We then solved 
stochastic moment equations for flow in an “equivalent” unimodal porous medium using 
an exponential covariance with a correlation length computed for the composite Y field, 
compared these results with those from Monte Carlo simulations conducted for flow in 
the bimodal porous medium and in equivalent unimodal medium, and discussed the 
applicability of the stochastic moment-based models developed for unimodal porous 
media to flow in bimodal porous media. We also solved stochastic moment equations for 
flow in the bimodal medium with covariance computed using (24), instead of a single 
correlation scale.  

Our results show that, when the total variance of the lnK is small, for example 
2
Yσ < 1.0, no matter what the lnK distribution is, the mean head and its variance from both 

the unimodal and bimodal moment-based stochastic models as well as those from the 
unimodal Monte Carlo simulation are close to the bimodal Monte Carlo simulation 
results. This indicates that the unimodal moment-based stochastic models are applicable 
to a bimodal system in this case.  

When the total variance the lnK is large, the symmetry of the lnK distribution has 
a great effect on the applicability of the stochastic moment approaches. When the lnK 
distribution is symmetric, results from both unimodal and bimodal moment-based models 
are very close to those from bimodal Monte Carlo simulations for the composite variance 
as large as 4.0. As the composite variance increases, the agreement between the second-
order moment-based models and the bimodal Monte Carlo simulations deteriorates. 
When the lnK distribution is asymmetric, results from two sets of Monte Carlo 
simulations may be in close agreements, due to the fact that one material dominates the 
distribution and thus the bimodal porous medium may be well represented by its 
equivalent unimodal porous medium. For this case and when the composite variance is 
about 3.5, the results from both unimodal and bimodal moment-based models are 
significantly different than those from the corresponding Monte Carlo simulations, 
indicating that the second-order moment-based stochastic models do not work for a 
relatively large composite variance under these conditions. The applicability of the 
second-order moment-based stochastic models to a bimodal porous medium is further 
limited by the fact that in realty the mean log hydraulic conductivities between different 
materials may differ by several orders of magnitude, thus the composite variance of the 
lnK may be very large.  
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